§ 1065.372

estimate the level of $NO_{\rm X}$ emissions corresponding to the applicable standard.

(2) You may use a NO_X CLD analyzer that you determine does not meet this verification, as long as you try to correct the problem and the measurement deficiency does not adversely affect your ability to show that engines comply with all applicable emission standards.

[73 FR 59328, Oct. 8, 2008, as amended at 73 FR 73789, Dec. 4, 2008; 75 FR 23041, Apr. 30, 2010; 76 FR 57447, Sept. 15, 2011]

§ 1065.372 NDUV analyzer HC and H₂O interference verification.

- (a) Scope and frequency. If you measure NO_X using an NDUV analyzer, verify the amount of H_2O and hydrocarbon interference after initial analyzer installation and after major maintenance.
- (b) Measurement principles. Hydrocarbons and H_2O can positively interfere with an NDUV analyzer by causing a response similar to NO_X . If the NDUV analyzer uses compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct such measurements to test the algorithms during the analyzer interference verification.
- (c) System requirements. A NO_X NDUV analyzer must have combined H_2O and HC interference within $\pm 2\%$ of the flow-weighted mean concentration of NO_X expected at the standard, though we strongly recommend keeping interference within $\pm 1\%$.
- (d) *Procedure*. Perform the interference verification as follows:
- (1) Start, operate, zero, and span the $NO_{\rm X}$ NDUV analyzer according to the instrument manufacturer's instructions.
- (2) We recommend that you extract engine exhaust to perform this verification. Use a CLD that meets the specifications of subpart C of this part to quantify NO_X in the exhaust. Use the CLD response as the reference value. Also measure HC in the exhaust with a FID analyzer that meets the specifications of subpart C of this part. Use the FID response as the reference hydrocarbon value.

- (3) Upstream of any sample dryer, if one is used during testing, introduce the engine exhaust to the NDUV analyzer.
- (4) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the transfer line and to account for analyzer response.
- (5) While all analyzers measure the sample's concentration, record 30 seconds of sampled data, and calculate the arithmetic means for the three analyzers.
- (6) Subtract the CLD mean from the NDUV mean.
- (7) Multiply this difference by the ratio of the flow-weighted mean HC concentration expected at the standard to the HC concentration measured during the verification. The analyzer meets the interference verification of this section if this result is within $\pm 2\%$ of the NO_x concentration expected at the standard.
- (e) *Exceptions*. The following exceptions apply:
- (1) You may omit this verification if you can show by engineering analysis that for your NO_X sampling system and your emission calculation procedures, the combined HC and H_2O interference for your NO_X NDUV analyzer always affects your brake-specific NO_X emission results by less than 0.5% of the applicable NO_X standard.

[70 FR 40516, July 13, 2005, as amended at 73 FR 37312, June 30, 2008; 76 FR 57447, Sept. 15, 2011]

§ 1065.375 Interference verification for N₂O analyzers.

- (a) Scope and frequency. See §1065.275 to determine whether you need to verify the amount of interference after initial analyzer installation and after major maintenance.
- (b) Measurement principles. Interference gasses can positively interfere with certain analyzers by causing a response similar to N_2O . If the analyzer uses compensation algorithms that utilize measurements of other gases to meet this interference verification, simultaneously conduct these other measurements to test the compensation algorithms during the analyzer interference verification.

Environmental Protection Agency

- (c) System requirements. Analyzers must have combined interference that is within (0.0 $\pm 1.0)~\mu mol/mol.$ We strongly recommend a lower interference that is within (0.0 $\pm 0.5)~\mu mol/mol.$
- (d) *Procedure*. Perform the interference verification as follows:
- (1) Start, operate, zero, and span the N_2O analyzer as you would before an emission test. If the sample is passed through a dryer during emission testing, you may run this verification test with the dryer if it meets the requirements of §1065.342. Operate the dryer at the same conditions as you will for an emission test. You may also run this verification test without the sample dryer.
- (2) Create a humidified test gas by bubbling a multi component span gas that incorporates the target interference species and meets the specifications in §1065.750 through distilled water in a sealed vessel. If the sample is not passed through a dryer during emission testing, control the vessel temperature to generate an H₂O level at least as high as the maximum expected during emission testing. If the sample is passed through a dryer during emission testing, control the vessel temperature to generate an H₂O level at least as high as the level determined in §1065.145(e)(2) for that dryer. Use interference span gas concentrations that are at least as high as the maximum expected during testing.
- (3) Introduce the humidified interference test gas into the sample system. You may introduce it downstream of any sample dryer, if one is used during testing.
- (4) If the sample is not passed through dryer during this a verification test, measure the water mole fraction, $x_{\rm H2O}$, of the humidified interference test gas as close as possible to the inlet of the analyzer. For example, measure dewpoint, $T_{\rm dew}$, and absolute pressure, p_{total} , to calculate $x_{\rm H2O}$. Verify that the water content meets the requirement in paragraph (d)(2) of this section. If the sample is passed through a dryer during this verification test, you must verify that the water content of the humidified test gas downstream of the vessel meets the requirement in paragraph (d)(2) of this section based on either di-

- rect measurement of the water content (e.g., dewpoint and pressure) or an estimate based on the vessel pressure and temperature. Use good engineering judgment to estimate the water content. For example, you may use previous direct measurements of water content to verify the vessel's level of saturation.
- (5) If a sample dryer is not used in this verification test, use good engineering judgment to prevent condensation in the transfer lines, fittings, or valves from the point where $x_{\rm H2O}$ is measured to the analyzer. We recommend that you design your system so that the wall temperatures in the transfer lines, fittings, and valves from the point where $x_{\rm H2O}$ is measured to the analyzer are at least 5 °C above the local sample gas dewpoint.
- (6) Allow time for the analyzer response to stabilize. Stabilization time may include time to purge the transfer line and to account for analyzer response.
- (7) While the analyzer measures the sample's concentration, record its output for 30 seconds. Calculate the arithmetic mean of this data.
- (8) The analyzer meets the interference verification if the result of paragraph (d)(7) of this section meets the tolerance in paragraph (c) of this section.
- (9) You may also run interference procedures separately for individual interference gases. If the interference gas levels used are higher than the maximum levels expected during testing, you may scale down each observed interference value by multiplying the observed interference by the ratio of the maximum expected concentration value to the actual value used during this procedure. You may run separate interference concentrations of H₂O (down to 0.025 mol/mol H₂O content) that are lower than the maximum levels expected during testing, but you must scale up the observed H2O interference by multiplying the observed interference by the ratio of the maximum expected H₂O concentration value to the actual value used during this procedure. The sum of the scaled

§ 1065.376

interference values must meet the tolerance specified in paragraph (c) of this section.

[74 FR 56515, Oct. 30, 2009]

§ 1065.376 Chiller NO₂ penetration.

- (a) Scope and frequency. If you use a chiller to dry a sample upstream of a NO_X measurement instrument, but you don't use an NO_2 -to-NO converter upstream of the chiller, you must perform this verification for chiller NO_2 penetration. Perform this verification after initial installation and after major maintenance.
- (b) Measurement principles. A chiller removes water, which can otherwise interfere with a NO_X measurement. However, liquid water remaining in an improperly designed chiller can remove NO_2 from the sample. If a chiller is used without an NO_2 -to-NO converter upstream, it could remove NO_2 from the sample prior NO_X measurement.
- (c) System requirements. A chiller must allow for measuring at least 95% of the total NO₂ at the maximum expected concentration of NO₂.
- (d) *Procedure*. Use the following procedure to verify chiller performance:
- (1) Instrument setup. Follow the analyzer and chiller manufacturers' startup and operating instructions. Adjust the analyzer and chiller as needed to optimize performance.
- (2) Equipment setup and data collection. (i) Zero and span the total NO_X gas analyzer(s) as you would before emission testing.
- (ii) Select an NO_2 calibration gas, balance gas of dry air, that has an NO_2 concentration within $\pm 5\%$ of the maximum NO_2 concentration expected during testing.
- (iii) Overflow this calibration gas at the gas sampling system's probe or overflow fitting. Allow for stabilization of the total NO_X response, accounting only for transport delays and instrument response.
- (iv) Calculate the mean of 30 seconds of recorded total $NO_{\rm X}$ data and record this value as $x_{\rm NOXref.}$
- (v) Stop flowing the NO_2 calibration gas.
- (vi) Next saturate the sampling system by overflowing a dewpoint generator's output, set at a dewpoint of 50 °C, to the gas sampling system's probe or

overflow fitting. Sample the dewpoint generator's output through the sampling system and chiller for at least 10 minutes until the chiller is expected to be removing a constant rate of water.

- (vii) Immediately switch back to overflowing the NO_2 calibration gas used to establish $x_{NO_{\rm xref.}}$ Allow for stabilization of the total $NO_{\rm x}$ response, accounting only for transport delays and instrument response. Calculate the mean of 30 seconds of recorded total $NO_{\rm x}$ data and record this value as $x_{NO_{\rm xmeas}}$.
- (viii) Correct $x_{\rm NOxmeas}$ to $x_{\rm NOxdry}$ based upon the residual water vapor that passed through the chiller at the chiller's outlet temperature and pressure.
- (3) Performance evaluation. If x_{NOxdry} is less than 95% of x_{NOxref} , repair or replace the chiller.
- (e) *Exceptions*. The following exceptions apply:
- (1) You may omit this verification if you can show by engineering analysis that for your NO_X sampling system and your emission calculations procedures, the chiller always affects your brakespecific NO_X emission results by less than 0.5% of the applicable NO_X standard.
- (2) You may use a chiller that you determine does not meet this verification, as long as you try to correct the problem and the measurement deficiency does not adversely affect your ability to show that engines comply with all applicable emission standards

[73 FR 37312, June 30, 2008]

§ 1065.378 NO₂-to-NO converter conversion verification.

- (a) Scope and frequency. If you use an analyzer that measures only NO to determine NO_X , you must use an NO_2 -to-NO converter upstream of the analyzer. Perform this verification after installing the converter, after major maintenance and within 35 days before an emission test. This verification must be repeated at this frequency to verify that the catalytic activity of the NO_2 -to-NO converter has not deteriorated.
- (b) Measurement principles. An NO₂-to-NO converter allows an analyzer that measures only NO to determine total